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Abstract: When optimizing signal-controlled intersections based on per capita delay, researchers often simplify 

models to estimate per capita delay by using average passenger capacity and average delay per vehicle for different 

vehicle types. This simplified method ignores certain influential factors of per capita delay. Based on the improved 

traditional Webster model, this paper presents theoretical proof to demonstrate that per capita delay is significantly 

influenced by different passenger capacities and arrival sequences of vehicles. An estimation method for per capita 

delay that combines the improved Webster model with Gaussian mixture model is proposed. The proposed 

estimation method was tested using VISSIM simulation software under various scenarios, including different traffic 

volume distributions, arrival sequences of vehicles, proportions of vehicle types, and vehicle passenger capacity 

distributions. The results show that per capita delay at signal-controlled intersections is affected by the arrival 

sequence of vehicles with varying passenger capacities and the vehicle type proportions. With these influential 

factors reflected, the proposed estimation method provides more accurate estimates of per capita delay and the 

extreme values under non-saturated traffic flow conditions. DOI: 10.13813/j.cn11-5141/u.2023.0405-en 

Keywords: traffic control; per capita delay; analysis of influence factors; improved Webster model; VISSIM 

simulation; signal-controlled intersections 

0 Introduction 

With the development of urban motorization, delay per 

vehicle (DPV) has long been regarded as a key indicator for 

signal optimization and control at urban road intersections 
[1–2]

. 

By introducing a vehicle delay function and considering 

parameters including queue length, number of stops, signal 

cycle, and effective green time, intersection signal timing is 

optimized 
[3–5]

. Vehicle delay can be a primary indicator for 

evaluating traffic efficiency at signal-controlled intersections 
[6]

. 

However, considering only the traffic efficiency of motor 

vehicles is no longer sufficient to meet the demands of 

urbanization and sustainable transportation development. 

The focus of transportation management and research is 

gradually shifting from vehicles to individuals, incorporating 

delay per person (DPP) to evaluate passenger experience in 

response to complex traffic flows with different types of 

vehicles and the scenario evaluation of various intersection 

crossing strategies
 [7–8]

. Public buses, which can carry a large 

number of passengers, are the primary focus of DPP research. 

Studies have concentrated on optimizing signal timing for 

buses, setting up bus-only lanes, and developing models to 

optimize DPP at intersections 
[9–12]

. Some studies have used 

DPP as a key parameter to reflect the priority of bus 

passengers, developing signal control optimization models 

that prioritize buses by allowing more passengers to cross 

intersections efficiently within a given cycle
 [13–14]

. Studies 

have also found that considering DPP in signal control 

optimization models can improve the traffic efficiency of 

public bus passengers while reducing harmful gas emissions 

per person 
[15]

. 

The current research on optimizing traffic based on DPP, such 

as the optimization of signal-controlled intersections 
[7, 12, 15]

, 

typically estimates DPP by considering the average passenger 

capacity and DPV of different vehicle types, while ignoring 

the influence of different vehicle passenger capacities and 

arrival sequences on DPP. While this does not undermine the 

effectiveness of using DPP as an optimization objective, it 

does affect the accuracy of evaluating optimization results. 

To more accurately reflect DPP experienced by passengers, 

this study proposes a DPP under adapted Webster model 

(DPP-AWM) to reveal the impact of different vehicle arrival 

sequences on DPP at signal-controlled intersections for 

vehicles with different passenger capacities. Test scenarios 

are established to verify the application effect of the 

DPP-AWM under different traffic volumes, vehicle arrival 

sequences, vehicle type proportions, and vehicle passenger 

capacity distributions, and to discuss the practical 

significance of DPP. The exploration of DPP in this study 

provides a new theoretical foundation for the practical 

implementation of a people-centered approach to 

sustainable transportation development, including urban 

development with a focus on public transport, bus priority 

design, and the implementation of signal control 

coordination systems. 
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1 DPP-AWM at signal-controlled intersections 

To better illustrate the impact of varying vehicle passenger 

capacities and arrival sequences on DPP at signal-controlled 

intersections, this study uses the following example to 

illustrate the difference between the average based DPP 

(ADPP) and the distribution based DPP (DDPP) methods. 

Suppose two vehicles, A and B with different passenger 

capacities, arrive at an intersection within the same signal 

cycle. Vehicle A has one passenger while vehicle B has ten 

passengers. One vehicle arrives during the green light phase 

and passes through the intersection without delay, while the 

other vehicle arrives during the red light phase and 

experiences a delay of one second. The ADPP and DDPP are 

calculated under different scenarios, as shown in Tab. 1. 

Tab. 1  DPP calculation methods at signal-controlled 

intersections 

 

The results indicate that the ADPP method fails to reflect 

the difference in DPP resulting from the varying arrival 

sequences of vehicles with different passenger capacities. In 

contrast, the DDPP method effectively captures the influence 

of arrival sequences of vehicles with different passenger 

capacities on the DPP. Consequently, the DPP-AWM method 

is introduced to estimate DPP more accurately. 

1.1 Adapted Webster model 

The traditional Webster model relies on the variation in the 

cumulative arrival and departure of vehicles at intersection 

inlets, as illustrated by Fig. 1 
[16]

. Specifically, OA and BA 

represent the curves of cumulative arrival and departure of 

vehicles respectively. Assuming no queued vehicles exist at 

the onset of the red signal phase, the total delay of vehicles 

throughout one signal cycle is equivalent to the area of 

triangle OAB in Fig. 1. The DPV at the intersection inlet can 

be illustrated as follows: 

 
where SOAB represents the area of triangle OAB/(vehicle·s); C 

denotes the signal cycle/s; q represents the vehicle arrival 

rate/(vehicle·s
−1

); g stands for the green signal phase 

duration/s; s represents the vehicle departure rate/ 
(vehicle·s

−1
). 

If each vehicle carries only one person, DPP is obviously 

equal to DPV. If there is at least one person in each vehicle, 

theoretically, the traditional Webster model can still be used 

to calculate DPP in the same way as calculating DPV. In this 

case, the passenger capacity of different vehicles can be 

considered as the point density of triangle OAB, and the mass 

of triangle OAB represents the total delay experienced by 

passengers passing through the intersection. Since the 

passenger capacity is a random variable independent of signal 

phase and vehicle arrival quantity, directly solving for the 

mass of triangle OAB can be challenging. Specifically, when 

the number of people in each vehicle is the same, i.e., the 

point density of triangle OAB is a constant, the traditional 

Webster model can be used to calculate DPP in the same way 

as calculating DPV. In this scenario, the calculated DPP is 

evidently equal to DPV. 

To calculate the total delay experienced by passengers in 

vehicles with different passenger capacities, this study adapts 

the traditional Webster model to estimate DPP based on the 

cumulative arrival and departure numbers at intersection 

inlets, as shown in Fig. 2. OABG represents the curve of 

cumulative passenger arrivals, while DEFG represents the 

curve of cumulative passenger departures. When the 

assumptions of the traditional Webster model remain 

unchanged, the total delay experienced by passengers within 

one signal cycle is equal to the shaded area in Fig. 2. DPP at 

intersection inlets can be calculated as follows: 

 
where 

 
The following equation can be derived: 

 
where SOABGH represents the area of the polygon 

OABGH/(person·s); SDEFGH represents the area of the polygon 

DEFGH/(person·s); Pj represents the passenger capacity of 

the j-th arriving vehicle in the current cycle/(person). 

To calculate the area of polygon OABGH, the polygon is 

divided into several trapezoids with the same height, which 

corresponds to the headway of a vehicle at the time it arrives 

at the intersection, namely 1/q. Similarly, to calculate the area 

of polygon DEFGH, the polygon is divided into several 

trapezoids with the same height, which corresponds to the 
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headway of a vehicle at the time it leaves the intersection, 

namely 1/s. The terms in each bracket of f represent the sum 

of the upper and lower bases of each trapezoid (the first 

trapezoid being a triangle), where the upper and lower bases 

represent the accumulated number of people before and after 

a vehicle passes through the intersection respectively. It can 

be seen that, under the condition of relatively fixed traffic 

volume and signal timing plan at the intersection, the key to 

estimating DPP lies in estimating the cumulative passenger 

capacity of arriving vehicles. In equation (3),

represents the weighted sum of the passenger capacity of 

vehicles that experience delays within the same signal cycle. 

The weight j represents the order in which vehicles arrive, 

which implies that the sequencing of vehicle arrivals 

influences the estimation of DPP. For instance, assuming the 

number of vehicles arriving at the intersection and the 

passenger capacity per vehicle remain constant within a 

signal cycle, DPP reaches its maximum when vehicles with 

higher passenger capacity arrive first and reaches its 

minimum when vehicles with lower passenger capacity 

arrive first, as the signal cycle starts from the red phase in the 

Webster model. Furthermore, if the arrival sequence of 

vehicles with similar or equal passenger capacities is altered 

within the same signal cycle, DPP remains relatively 

unchanged. However, if the arrival sequence of vehicles with 

significantly different passenger capacities is modified, DPP 

will experience a significant change. It is evident that the 

enhanced Webster model exhibits sensitivity to variations in 

passenger capacity. Given the substantial proportion of 

private cars in urban traffic flow, the arrival sequences at 

intersections for vehicles with high passenger capacity, such 

as buses and large vehicles, have a more pronounced impact 

on the DPP. 

 

Fig. 1 DPV at signal-controlled intersections 

To reflect the impact of average passenger capacity on 

estimating DPP, the average passenger capacity  is used to 

replace the cumulative sum of vehicle passenger capacity. 

 are substituted into equations 

(2) and (3). The result is as follows: 

 
It can be observed that equation (4) is identical to equation 

(1), and it is because the underlying assumption of using 

average passenger capacity is that all vehicles have the same 

passenger capacity. Therefore, estimating DPP without 

considering vehicle types using average vehicle capacity 

essentially becomes an estimation of DPV. 

 

Fig. 2 DPP at signal-controlled intersections 

1.2 DPP estimation 

It can be inferred from the adapted Webster model that 

DPP estimation at intersections relies on estimating the 

passenger capacity of vehicles reaching the intersection and 

the arrival sequence of vehicles with different passenger 

capacities. The vehicle passenger capacity is influenced not 

only by its seating capacity but also by driver or passenger 

travel behavior and other factors. This study categorizes 

vehicles affected by the same factors into the same type and 

assumes that vehicles of the same type follow the same 

passenger capacity distribution. By collecting information on 

vehicle capacity in the area where the target intersection is 

located through resident travel surveys and consultations 

with public bus operators, the distribution of vehicle capacity 

can be obtained. Furthermore, the number of vehicle types in 

the area can be determined based on the number of peaks in 

the capacity distribution. The DPP-AWM method further 

assumes that the capacity of vehicles of different types 

follows different normal distributions and uses a Gaussian 

mixture model (GMM) to estimate the distribution of vehicle 
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capacity. The parameters of GMM can be estimated using the 

expectation-maximization (EM) algorithm. 

Although vehicles with different passenger capacities 

typically arrive at intersections randomly, there is a certain 

regularity in the order of vehicle arrivals within the same 

signal cycle due to the intervention of traffic control 

measures. Therefore, the DPP-AWM method has added the 

step of optional vehicle sequence adjustment in the adapted 

Webster model, enabling it to adjust the sequence of vehicle 

arrivals based on traffic control measures at intersections. For 

instance, if the intersection implements a strategy that 

prioritizes the passage of vehicles with high capacities 

(hereinafter referred to as high-capacity vehicles), such as 

buses, through early red signal activation or extended green 

signal duration, these vehicles will pass during the green 

signal period. By considering pre-existing vehicle queues 

during the red signal period, high-capacity vehicles will be 

positioned towards the rear of the traffic flow arriving at the 

intersection within the same signal cycle. In such cases, the 

DPP-AWM method estimates DPP by placing high-capacity 

vehicles at the end of the queue.  

The framework of the DPP-AWM method proposed in this 

study is shown in Fig. 3, and the process of using the 

DPP-AWM method to estimate DPP within one signal cycle 

at the target intersection is as follows:  

1) The parameter values of GMM are estimated using the 

EM algorithm based on the passenger capacity data at the 

target intersection. 

2) According to the signal timing and traffic flow data at 

the target intersection, the number of vehicles experiencing 

delay a and the number of vehicles passing through the 

intersection b within one signal cycle are calculated based on 

the adapted Webster model. 

3) b consecutive random sampling is performed using the 

GMM model to obtain an ordered set of samples {P1, P2, ..., 

Pa, ..., Pb}, which represent estimated passenger capacities of 

vehicles arriving at the intersection within one signal cycle. 

The first a samples correspond to the passenger capacity of 

delayed vehicles. 

4) The sample sequence in {P1, P2, ..., Pa, ..., Pb} is 

adjusted according to specific requirements and inputted into 

the adapted Webster model to estimate DPP. 

In practice, it is often necessary to estimate DPP at an 

intersection over a specific period. For instance, during the 

dynamic evaluations of signal-controlled intersections, the 

evaluation time interval is typically set to 2–3 times the signal 

cycle duration and should not be less than five minutes 
[17]

. 

The DPP-AWM method can continuously repeat the above 

estimations and obtain the DPP estimation value over 

multiple consecutive signal cycles . 

DPPn represents the estimated DPP value in the n-th 

iteration/s; bn denotes the number of vehicles passing through 

the intersection in the n-th iteration/vehicle; Pi, n represents 

the passenger capacity of the i-th vehicle in the n-th 

iteration/person; N represents the number of consecutive 

estimations, indicating the number of signal cycles within a 

specific period. Its value can be adjusted according to 

practical requirements. In addition to simulating DPP over 

multiple consecutive signal cycles, the DPP-AWM method 

also helps mitigate the impact of sampling randomness on the 

results in GMM by conducting multiple estimations.  

 

Fig. 3  Framework of DPP-AWM at signal-controlled 

intersections 

Furthermore, due to the fact that in the adapted Webster 

model, the number of delayed vehicles within one signal 

cycle qs (C−g)/(s−q) and the number of vehicles passing 

through the intersection Cq may not be integers, it is 

necessary to round them to obtain the values of a and b. 

While simpler methods can be employed to round the vehicle 

counts, it should be noted that errors can accumulate and 

amplify with an increasing number of estimations. To 

mitigate the errors caused by straightforward rounding 

techniques such as rounding, rounding up, or rounding down, 

this study proposes a vehicle count rounding algorithm, 

which follows the steps as follows. 

1) The number of delayed vehicles and the number of 

vehicles passing through the intersection in each estimation 

are rounded down. 

2) The reduced number of delayed vehicles and vehicles 

passing through the intersection resulting from step 1) is 

calculated. 

3) The computed number of vehicles obtained in step 2) is 

distributed among the various estimations, and the following 

two principles should be followed. Firstly, in each estimation, 

the maximum number of delayed vehicles and vehicles 

passing through the intersection assigned should not exceed 

one respectively. Secondly, the number of delayed vehicles in 

each estimation should always be less than or equal to the 

number of vehicles passing through the intersection. 
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2 Experimental design 

2.1 Simulation construction 

At present, it is difficult to collect the real-time passenger 

capacity of vehicles at intersections. In this study, the widely 

used VISSIM simulation software (version 10.0) is employed 

to create various simulation test scenarios and simulate the 

passage of vehicles at intersections under different traffic 

volumes, vehicle arrival sequences, vehicle type proportions, 

and passenger capacity distributions. The basic settings for 

intersection channelization, road design, and signal control 

are kept consistent across different test scenarios. 

The focus of the simulations in this study is not to replicate 

a specific real-world intersection, but to simulate the traffic 

conditions of multiple possible intersections. Therefore, by 

referring to the Urban Road Intersection Planning 

Specification (GB 50647-2011) and the Urban Road 

Engineering Design Specification (CJJ 37-2012), a 

signal-controlled intersection is constructed with a 

cross-shaped configuration where north-south and east-west 

roads intersect. Each road segment has a length of 150 m with 

the entrance segment measuring 50 m, consisting of one 

left-turn lane and one through lane. Vehicles have the freedom 

to change lanes before entering the entrance segment. The 

desired speed for each segment is set at 50 km·h
−1

, with a 

saturation flow rate of 0.533 vehicle·s
−1

 for through 

movements and 0.5 vehicles·s
−1

 for left-turn movements. The 

intersection follows the traditional 4-phase signal control 

scheme. The total signal cycle length is 100 s, with 25 s for 

the north-south and east-west through phases and 15 s for the 

left-turn phases, followed by a 3 s yellow signal phase and a 2 s 

all-red signal phase between phases. Since right-turning 

vehicles are not signal-controlled, they are not included in the 

simulation. According to the durations of the through and 

left-turn phases, the ratio of through vehicles to left-turn 

vehicles is set at 5/3. In the simulation, vehicles are 

categorized as either high-capacity vehicles or low-capacity 

vehicles, representing medium-sized or larger buses and cars 

on urban roads respectively. The passenger capacity of 

vehicles within the same category follows a normal 

distribution. The total simulation duration for each test 

scenario is 36 500 s, with vehicle generation based on 

predetermined traffic volumes, turning proportions, and 

vehicle type proportions for the first 36 000 s. The vehicle 

driving behavior and generation method follow the default 

settings of the simulation software. 

2.2 Testing scenarios and parameters setting 

In this study, the DPP-AWM method is tested in three 

different scenarios. In scenario 1, the proportions of vehicle 

types and passenger capacity distributions are predetermined 

to simulate the passage of vehicles at intersections under 

different traffic volumes. In scenario 2, the traffic volume and 

passenger capacity distributions are predetermined to 

simulate the passage of vehicles at intersections under 

different proportions of vehicle types. In scenario 3, the 

traffic volume and proportions of vehicle types are 

predetermined to simulate the passage of vehicles at 

intersections under different passenger capacity distributions.  

To reflect the sequence of vehicle arrivals, particularly the 

impact of the arrival order of high-capacity vehicles, three 

different vehicle arrival patterns are tested for each scenario. 

In pattern 1, vehicles of different types arrive randomly, 

simulating the situation without any optimized traffic control 

measure. In pattern 2, low-capacity vehicles arrive randomly 

while high-capacity vehicles arrive during the green signal 

phase, simulating the scenario where optimized traffic 

control measures allow high-capacity vehicles to pass 

through the intersection without stopping, resulting in the 

minimum DPP. In pattern 3, low-capacity vehicles arrive 

randomly while high-capacity vehicles arrive at the 

beginning of the red signal phase, simulating the scenario 

where the maximum DPP at the intersection is possible. The 

parameter setting for each scenario is shown in Tab. 2. 

Tab. 2 Scenario parameters setting 

 

1) Traffic volume on road segments 

According to the simulation settings, the theoretical 

saturated flow rate = 3 600/100 ×25 × 0.533 + 3 600/100 × 15 × 

0.5 = 749.7 vehicle·h
−1

. It is observed from the actual 

simulation results that when the traffic volume exceeds 

600 vehicles·h
−1

 in all directions of the intersection, the 

traffic flow will reach a saturated state. To ensure a certain 

delay at the intersection, the minimum traffic volume for each 

road segment is set to 300 vehicles·h
−1

. Therefore, the traffic 

volume range for scenario 1 is set to 300–700 vehicles·h
−1

. 

As one of the assumptions of the Webster model is 

non-saturated traffic flow, the traffic volume for each road 

segment in scenarios 2 and 3 is set to 300 vehicles·h
−1

. 

2) Proportion of high-capacity vehicles 

To ensure that both types of vehicles occupy a certain 

proportion on the road segment, the proportion of 

high-capacity vehicles in scenario 2 is set to vary between 

10% and 90%. Since high-capacity vehicles account for a 

smaller proportion in actual road traffic flow, the proportion 

of high-capacity vehicles in scenario 1 is set to 10%. To 

eliminate the sensitivity differences in the model under 

different passenger capacity distributions caused by an 

imbalance in vehicle types, the proportion of high-capacity 

vehicles in scenario 3 is set to 50%. 
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3) Passenger capacity distribution 

In comparison to high-capacity vehicles, the variation in 

passenger capacity of low-capacity vehicles has a negligible 

impact on DPP. Since the passenger capacity of cars on 

urban roads is generally 1–5 people, the mean of the 

passenger capacity distribution for low-capacity vehicles in 

all scenarios is set to two, and the standard deviation is set to 

0.8. High-capacity vehicles are typically public transport 

vehicles, and their seating capacity determines the mean of 

the passenger capacity distribution, while passenger 

demand determines the standard deviation. To simplify the 

simulation process, this study does not account for 

variations in passenger demand. Therefore, the standard 

deviation of the passenger capacity distribution for 

high-capacity vehicles in all scenarios is set to 10. Under the 

specifications in Type Classification and Grading 

Evaluation of Buses (JT/T 888–2020) and Calculation 

Method for Passenger Vehicle Load Quality (GB/T 

12428–2005), the mean of the passenger capacity 

distribution for high-capacity vehicles in scenario 3 is set to 

vary between 30 and 70 people, while in scenarios 1 and 2, 

the mean value is fixed to 40 people. 

2.3 Evaluation method 

In this study, the signal timings and saturation flow rates 

for the same turning movements are consistent across 

different road segments. Therefore, DPP for the same turning 

movement is calculated by aggregating the results from each 

road segment. Since the simulation software can output the 

delay and passenger load of each vehicle directly, the DPP 

can be calculated directly from the simulation results. To 

estimate DPP under different scenarios and vehicle arrival 

patterns using the DPP-AWM method, the number of 

consecutive estimations is set to 100. Due to the significant 

differences in DPP, this study uses the absolute percentage 

error (APE) to evaluate the accuracy of the estimated DPP 

under different scenarios and vehicle arrival patterns, which 

can be expressed as follows: 

 
where DPPT represents the simulated DPP to be estimated/s; 

DPP represents the estimated DPP/s. 

To objectively evaluate the accuracy of the DPP-AWM 

method, it is compared with the commonly used average 

based DPP model (ADPP-M). The estimated DPP using the 

ADPP-M method is calculated as . 

represents the DPV for the k-th category of vehicles/s; qk 

represents the flow rate of the k-th category of 

vehicles/(vehicle·s
−1

); represents the average passenger 

capacity for the k-th category of vehicles/person. 

3 Results and analyses 

3.1 Scenario 1: DPP estimation under different 

traffic volumes 

In scenario 1, a total of 15 simulations under five different 

traffic volume conditions are conducted for each of the three 

vehicle arrival patterns. The results for DPP and DPV are 

shown in Fig. 4. 

Since the vehicle arrival patterns have no impact on the 

number of vehicles generated in the simulation, DPV remains 

the same for different arrival patterns. However, DPP 

increases with an increase in traffic volume for all vehicle 

arrival patterns. Under the same traffic volume conditions, 

DPP in pattern 1 is approximately equal to the average of 

patterns 2 and 3 as well as DPV. This suggests that while the 

sequence of vehicle arrivals does impact DPP, this influence 

diminishes when vehicles arrive randomly at intersections 

over a sufficiently long observation period. 

The average APE and the APE differences under different 

patterns for the DPP-AWM method and ADPP-M method in 

scenario 1 are shown in Tab. 3. The results are as follows. 

1) When the traffic volume of the road segment changes, 

the DPP-AWM method, compared to the commonly used 

ADPP-M method, achieves an average improvement of 

31.1% in the accuracy of DPP estimation for through vehicles 

and an average improvement of 17.3% in the accuracy of 

DPP estimation for left-turn vehicles. 

2) Compared to pattern 1, the DPP-AWM method exhibits 

a greater improvement in the accuracy of DPP estimation in 

patterns 2 and 3. This indicates that the DPP-AWM method 

effectively captures the influence of different arrival 

sequences of vehicles with varying passenger capacities on 

DPP estimation. 

3) Due to the limitation of the traditional Webster model’s 

assumption of non-saturated traffic flow, although the 

DPP-AWM method can provide more accurate DPP estimation 

under non-saturated traffic conditions, its estimation accuracy 

is generally lower when the traffic flow reaches saturation. 

3.2  Scenario 2: DPP estimation for different 

vehicle type ratios 

In scenario 2, a total of 27 simulations are conducted for the 

three vehicle arrival patterns under nine different ratios of 

high-capacity vehicles. The results for DPP and DPV are 

shown in Fig. 5. 

Similar to scenario 1, under the same ratio of 

high-capacity vehicles, DPP in pattern 1 is approximately 

equal to the average values in patterns 2 and 3 as well as DPV. 

The variation of DPP in pattern 1 is relatively stable, 

indicating that when vehicles arrive randomly, DPP is less 

affected by the ratio of vehicle types. The increased ratio of 

high-capacity vehicles indicates the decreased difference in 

DPP between pattern 2 and pattern 3, implying a reduced 

impact of vehicle arrival sequence on DPP.
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Fig. 4 DPP and DPV in scenario 1 

Tab. 3 Comparison of DPP estimation accuracy in scenario 1 

 
1) The average APE of the ADPP-M method minus the average APE of the DPP-AWM method. 

The average APE and the APE differences under different 

patterns for the DPP-AWM method and ADPP-M method in 

scenario 2 are shown in Tab. 4. The results are as follows.  

1) When the ratio of vehicle types changes, the DPP-AWM 

method, compared to the commonly used ADPP-M method, 

achieves an average improvement of 29.2% in the accuracy 

of DPP estimation for through vehicles and an average 

improvement of 14.6% in the accuracy of DPP estimation for 

left-turn vehicles. 

2) Scenario 2 also demonstrates that the DPP-AWM 

method can effectively reflect the impact of different arrival 

sequences of vehicles with different passenger capacities on 

DPP estimation. 

3) As the proportion of high-capacity vehicles increases, 

the estimation accuracy of the ADPP-M method gradually 

becomes closer to that of the DPP-AWM method. This 

suggests that an increase in the proportion of high-capacity 

vehicles reduces the impact of vehicle arrival sequence on 

DPP estimation, leading to a decrease in the DPP variability 

across different signal cycles. 

3.3  Scenario 3: DPP estimation for different 

passenger capacity distributions 

In scenario 3, a total of 15 simulations are conducted for 

the three vehicle arrival patterns under five passenger 

capacity distributions of high-capacity vehicles. The only 

change made was the passenger volume distribution, 

specifically altering the average passenger volume. The 

results for DPP and DPV are shown in Fig. 6. 

Similar to scenarios 1 and 2, under the same average 

passenger capacity conditions of high-capacity vehicles, DPP 

in pattern 1 is approximately equal to the average values in 

patterns 2 and 3 as well as DPV. In scenario 3, DPP in all 

patterns does not vary with changes in the average passenger 

capacity, indicating that the average passenger capacity has 

no impact on DPP.
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Fig. 5 DPP and DPV in scenario 2 

Tab. 4 Comparison of DPP estimation accuracy in scenario 2 

 

 

The average APE and the APE differences under 

different patterns for the DPP-AWM method and ADPP-M 

method in scenario 3 are shown in Tab. 5. The results are as 

follows.  

1) When the average passenger capacity of 

high-capacity vehicles changes, the DPP-AWM method, 

compared to the commonly used ADPP-M method, 

achieves an average improvement of 32.0% in the 

accuracy of DPP estimation for through vehicles and an 

average improvement of 13.9% in the accuracy of DPP 

estimation for left-turn vehicles. 

2) Scenario 3 further confirms that the DPP-AWM 

method can effectively reflect the impact of different arrival 

sequences of vehicles with different passenger capacities on 

DPP estimation. 

4 Conclusions and prospects 

In the existing research on signal-controlled intersection 

optimization based on DPP, DPP estimation using the 

average passenger capacity of different vehicle types and 

DPV fails to consider the impact of the arrival sequences of 

vehicles with varying passenger capacities on DPP. 

Therefore, this study proposes the DPP-AWM method by 

combining the adapted Webster model and GMM. DPP 

experienced by passengers in various turning movements at 

intersections is simulated using the simulation software 

under different traffic volumes, vehicle arrival sequences, 

vehicle type proportions, and vehicle passenger capacity 

distributions. Furthermore, a comparative analysis between 

the DPP-AWM method and the commonly used ADPP-M 

method is performed. The conclusions are as follows.
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Fig. 6 DPP and DPV in scenario 3 

Tab. 5 Comparison of DPP estimation accuracy in scenario 3 

 

1) Although DPP at signal-controlled intersections is 

affected by the arrival sequences of vehicles with different 

passenger capacities, the impact diminishes and eventually 

dissipates as the observation time increases when vehicles 

arrive at the intersection randomly. With a sufficiently long 

observation time, DPP experienced by passengers in 

randomly arriving vehicles becomes equivalent to DPV. 

2) The mean passenger capacity distribution among 

different vehicle types does not exert an impact on DPP, 

implying that the seating capacity of vehicles does not affect 

DPP. However, the proportions of different vehicle types do 

affect DPP. Specifically, the proportion of high-capacity 

vehicles determines the extreme value of DPP at 

intersections. Additionally, the increased proportion of 

high-capacity vehicles indicates the diminished influence of 

vehicle arrival sequences on DPP. 

3) In comparison to the commonly used ADPP-M method, 

the proposed DPP-AWM method in this study effectively 

captures the impact of vehicle arrival sequences on DPP and 

provides more accurate estimations of DPP and its extreme 

values at different turns of intersections under non-saturated 

traffic flow conditions. It enhances the comprehensive 

evaluative capacity of DPP at signal-controlled intersections. 

Further improvements can be made in this study. 1) The 

precision of DPP estimation can be improved using the 

DPP-AWM method under saturated or oversaturated traffic 

flow conditions. 2) A more exact vehicle arrival sequence 

prediction model can be established to replace the step of 

vehicle sequence adjustment in the DPP-AWM method. 3) 

Real-world data on vehicle passenger capacities and vehicle 

delay at intersections can be used to test the DPP-AWM 

method. 



 

© 2023 China Academic Journals (CD Edition) Electronic Publishing House Co., Ltd. 10 

References 

[1] QADRI S S S M, GÖKÇE M A, ONER E. Stateof-art review of traffic 

signal control methods: challenges and opportunities [J]. European 

transport research review, 2020, 12(1): 1−23. 
[2] D'ANS G C, GAZIS D C. Optimal control of oversaturated 

store-and-forward transportation networks [J]. Transportation science, 

1976, 10(1): 1−19. 
[3] TALMOR I, MAHALEL D. Signal design for an isolated intersection 

during congestion [J]. Journal of the operational research society, 2007, 

58(4): 454−466. 
[4] SCHMÖECKER J D, AHUJA S, Bell M G H. Multi-objective signal 

control of urban junctions-framework and a London case study [J]. 

Transportation research part C: emerging technologies, 2008, 16(4): 
454−470. 

[5] RIBEIRO I M, SIMÕES M L O. The fully actuated traffic control 

problem solved by global optimization and complementarity [J]. 
Engineering optimization, 2016, 48(2): 199−212. 

[6] JIA R, DAI S H, HUANG N, et al. Literature review on traffic congestion 

identification methods [J]. Journal of South China University of 
Technology (nature science edition), 2021, 49(4): 124−139. (in Chinese) 

[7] LI J, JIA T Y. Signal timing optimization for intersection based on per 

capita delay [J]. Journal of highway and transportation research and 
development, 2021, 38(11): 134−141. (in Chinese) 

[8] FENG T J, SUN X L, HUANG J S, et al. Twophase signal intersection 

delay based on three street crossing modes [J]. Journal of Jilin University 
(engineering and technology edition), 2022, 52(3): 550−556. (in Chinese) 

[9] QIAO W X, WANG D. A transit signal priority optimizing model based 

on reliability [J]. Journal of transportation systems engineering and 
information technology, 2017, 17(2): 54−59. (in Chinese) 

[10] WANG Y R, LIU Y G, ZHENG S. Transit priority control based on 

presignal and contraflow left-turn lane [J]. Journal of transportation 
systems engineering and information technology, 2022, 20(3): 68−80. (in 

Chinese) 

[11] LI S, HAO W. Research on the model of the per capita delay of signal 
control intersection with bus lane [J]. Highway engineering, 2017, 42(3): 

37−39. (in Chinese) 

[12] XU J J, FENG P F. Bus-specific import lane setting strategy for 
intersections based on per capita delay [J]. Journal of Anshun University, 

2019, 21(1): 124−127. (in Chinese) 

[13] CHANG Y T. Passenger delay based optimal timing model for a signal 
intersection [J]. Journal of Hunan University (natural sciences), 2009, 

36(9): 22−26. (in Chinese) 

[14] JIAO P P, LI Z H, LIU M Q, et al. Real-time traffic signal optimization 
model based on average delay time per person [J]. Advances in 

mechanical engineering, 2015, 7(10): 1−11. 

[15] LIU C, WEI L Y. Signal timing optimization model considering per 
capita delay and per capita emissions [J]. Journal of Harbin Institute of 

Technology, 2018, 50(9): 83−88. (in Chinese) 

[16] WEBSTER F V. Traffic signal settings [R]. London: Road Research 
Laboratory, 1958. 

[17] The Ministry of Public Security of the PRC. Evaluation methods for 

road traffic congestion levels: GA/T 115—2020 [S]. Beijing: Standards 
Press of China, 2020. (in Chinese) 

 


