登录    注册    个人中心    ENGLISH
   
过刊检索
年份
《城市交通》杂志
2016年 第3期
交通节能减排智能化分析技术 ——北京市实践
点击量:1898

文章编号: 1672-5328(2016)03-0088-07

刘莹1, 2,刘宇环2,徐龙2,谷岩2
(1.北京工业大学,北京100124;2.北京市交通行业节能减排中心,北京100073)

摘要: 基于大数据的智能化监测分析技术为消除城市交通在节能减排领域决策判断的模糊性、解决 交通节能减排问题提供机遇。通过分析交通节能减排宏、中、微观工作对智能化监测分析的需求, 总结现有统计监测体系存在的问题。提出车辆能耗排放多维感知、高分辨率仿真及多尺度评估、海 量数据分析挖掘等交通节能减排智能化分析技术。具体阐述北京市在交通节能减排统计监测体系建 设、交通能耗与排放清单编制、交通节能减排规划和政策研究、驾驶行为矫正、节能减排标准研究 制定等方面的实践应用效果。最后指出,交通节能减排智能监测体系应构建本地化的模型及关键参 数,同时需要法律法规和体制机制的协同保障。

关键词: 城市交通;节能减排;智能化;大数据;北京市

中图分类号: U491

文献标识码:A

Smart Technology on Energy Conservation and Emission Reduction in Transportation System: A Case Study of Beijing

LiuYing1, 2, Liu Yuhuan2, Xu Long2, Gu Yan2
(1.Beijing University of Technology, Beijing 100124, China; 2.Beijing Transportation Environment & Energy Center, Beijing 100073, China)

Abstract: A big data mining-based intelligent technology of monitoring and analysis technology offers an opportunity to eliminate the ambiguity in the decision making process as well as solving the issues of energy conservation and emission reduction. By specifying the demand on intelligent monitoring technology at macro, meso, and micro-scale, this paper summarizes the defects of the existing technology and system, and a couple of new technologies, namely, Multidimensional Awareness, Simulation\Evaluation, and Data Mining. The paper illustrates the efforts of Beijing in system establishment of monitoring system for transportation energy conservation and emission reduction, development of transportation energy consumption and pollution emission inventory, planning and policy study, driving behavior correction, development of energy conservation and emission reduction standards. Finally, the paper urges to develop model and key parameters of intelligent monitoring system for transportation energy conservation and emission reduction that tailor to different cities. Registration and mechanism support are also necessary.

Keywords: urban transportation; energy conservation and emission reduction; intelligent; big data; Beijing