登录    注册    个人中心    ENGLISH
   
过刊检索
年份
《城市交通》杂志
2021年 第4期
基于多源数据的多模式公共交通出行链构建
点击量:111

文章编号: 1672-5328(2021)04-0120-07

张懿木1,陈田2,王俊2,李哲2,李健1, 2
(1. 同济大学城市交通研究院,上海200092;2. 同济大学道路与交通工程教育部重点实验室,上海201804)

摘要: 公共交通乘客出行链构建是公共交通出行需求分析的基础,也是推进城市公共交通系统融合 发展和可持续运营的关键。现有研究大多关注单一模式出行链,较少考虑多源数据环境下多模式公 共交通出行链构建,无法进行各模式之间的转移和换乘客流特征的分析。基于轨道交通、BRT和公 共汽车交通三网融合数据进行乘客出行链构建,数据类型主要有公交IC 卡、车载GPS等。具体方 法包括基于时间匹配的上车站点推算、基于出行链假设的下车站点匹配和基于换乘规则的个体出行 链推算。最后,使用厦门市公共交通数据验证了该方法的有效性,同时讨论了匹配阈值对匹配精度的 影响。

关键词: 城市公共交通;多源数据融合;多模式公共交通出行链;出行特征分析;运营管理

中图分类号: U491.1+2

文献标识码:A

Multi-Mode Public Transportation Travel Chain Construction Based on Multi-Source Data

Zhang Yimu1, Chen Tian2,Wang Jun2, Li Zhe2, Li Jian1, 2
(1. Urban Mobility Institute, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804)

Abstract: The construction of public transportation passenger travel chain is not only the basis of travel demand analysis, but also the key to promote the integrated development and sustainable operation of urban public transportation system. Most previous studies are generally concerned with the singlemode travel chain, but the multi-mode public transportation travel chain is seldom considered with multi- source data. Hence, it is difficult to analyze the characteristics of transfer and passenger flows between different travel modes. This paper builds the passenger travel chain based on the data fusion of rail transit, BRT and buses. The data types mainly include bus IC card, on-board GPS, and etc. Specific methods include the estimation of boarding stops based on time matching, the matching of alighting stops based on travel chain assumptions, and the estimation of individual travel chain based on transfer rules. Finally, the effectiveness of the proposed method is verified by using Xiamen public transportation data, and the influence of the matching threshold on the matching accuracy is discussed.

Keywords: urban public transportation; multi-source data fusion; multi-mode public transportation travel chain; travel characteristics analysis; operation management